Site Multihoming by
|IPv6 Intermediation

(shimé)

lljitsch van Beijnum

University of Cambridge Computer Lab, 2008-10-|

IPv6

Addresses are now |28 rather than 32 bits

Has some cool stuff like Neighbor
Discovery

But otherwise nothing new under the sun

Especially for routing: mainly just like IPv4
routing with more bits

More bits

® So:
® no artificial scarcity: everyone gets a /48

® (well... maybe a /56, or...)

® /48 = 65536 /64 subnets big enough for
all ethernet cards ever built and more

® what if millions of people want to
multihome with that /48!

Multihoming

® Connect to two or more ISPs. Usually:
® get provider independent” addresses

® announce these to the rest of the world
through each ISP with BGP

® if one ISP/link fails, packets are rerouted
over another

Routing scalability

® Average packet size: £ 500 bytes
® So 2.5 million packets/s on 10 gigabit link
® 0.4 ps to do a routing table lookup

® minimum size packets: 6/ nanoseconds
® "Global routing table"” now 269000 entries

® \Works for now, but can't handle too much
growth

Scalable multihoming

® The routing system can't absorb millions of
multihomers

® We need a solution!
® |[ETF multié wg tasked with that (~2001)
® many proposals for solutions

® several design teams

Outcome: shimé

Host-based solution: each host does its
own multihoming

A host gets multiple addresses from
multiple ISPs

When (a link to) an ISP fails: switch
addresses

But hide address changes from "upper layer
protocols” such as TCP/UDP

Shimé operation

Router

Router

Router

Shimé operation

Routzr

RGOS

Router

Shimé operation

Router

Host Host

A ISP X Router R

Router

Shimé operation

Router

Host — W Host
A ISPYC ROULET R

Router

How!

. Set up sessions as usual

. After some packets, shim layer between [P
and transports negotiates extra addresses

. HBA for security
. REAP for reachability detection

. After failure, rewrite addresses and insert
shim header

loc/id!?

® |s this a locator/identifier
split?

® sort of...

NEW e but the Upper Layer
NAMESPACE IDentifier (ULID) must

also be a working
locator address

® so not really

loc/id!?

® |s this a locator/identifier
split?

® sort of...

® but the Upper Layer
|Dentifier (ULID) must
also be a working
locator address

® so not really

Shimé signaling

Four-way handshake similar to HIP:

T1: initiates, mostly nonces
R1: reply with nonces to prevent DoS
T 2:just context state or also locators

R2: confirms, may have locators

Security

"Hi, my ID is windowsupdate.com, my
locator is iljitsch.net!”

Redirection attacks like this would be bad
IPsec et al. not a solution: too heavy

Shimé uses Hash Based Addresses:

® bottom 64 bits of IPv6 address contain a
hash over all valid locators

REAchability Protocol

® Assumption: traffic always flows in both
directions

corollary: if we receive we must send.
Shim will generate keepalives if needed

so if we send but don't receive: trouble

start exploration phase to find working
addresses

REAP (2)

Failures may be unidirectional

So if one end initiates exploration phase,
other enters it as well

Send probes with increasing interval

Echo back info from recent probe(s)

If we see inbound packets, go into
InboundOK

Opera-

REAP (3)

Send timeout:
SEND Probe Exploring

tional

1. Keepalive timeout:

SEND Keepalive

2. Incoming kKeepalive:

STOP Send

3. Outgoing packet:

START Sendh;
STOP keepalive

1. Incoming Probe InboundOk:
SEND Probe Operational;
RESTART Send
2. Incoming Probe Operational:
STOP Send;
START Keepalive

Send timeout:
SEND Probe Exploring

® Continue until

other end is also
in InboundOk

1.(Retransmit):
SEND Probe Exploring;

2. Outgoing packet

4, Incoming packet:
STOP Send:
START Keepalive

5. Incoming Probe InboundOk:
SEND Probe Operational;
RESTART Send;
STOP Keepalive
. Incoming Probe Operational:
STOP Send:
START Keepalive

1. Incoming Probe Exploring:
SEND Probe InboundOk;
START Send

® Then go to
Operational and
stop probing

Incoming Probe Exploring:
SEND Probe InboundOk;
RESTART Send;
STOP Keepalive 2. Incoming packet:
SEND Probe InboundOk;

START Send

3. Incoming Keepalive:
SEND Probe InboundOk;

1. Incoming Probe InboundOk: START Send

SEND Probe Operational;
RESTART Send
2. Incoming Probe Operational:
STOP Send;
START Keepalive

® Start rewriting
addresses into
newly found ones

(Retransmit):
SEND Probe Inboundok:
START Send
4. Incoming Probe Exploring:
SEND Probe InboundOk;
RESTART Send

START Send

2. Incoming packet:
STOP Send

3. Incoming kKeepalive!
STOP Send

Shimé header, rewriting

® No, this is not NAT: receiver restores
addresses before handing packet to ULP

® Shimé header is inserted for demultiplexing

0 1 2 3
0123456789 0123456789012345¢6789°01
e s ANt M o S S o e S S
| Next Header | Length | 1]
Sy S U N S S S
| Receiver Context Tag
e s ANt M o S S o e S S

Shimé issues

® Needs to be implemented on both sides!

® Need to update all hosts to make a site
multihomed

® Can't repair non-working ULID
® so apps must cycle through all addresses
® Need to renumber when switching ISPs

® No traffic engineering (yet)

More issues/status

Pulls the rug from under certain apps
Interaction with mobility, IPsec, SCTP
Only works with IPvé...

Pl addresses now available for IPv6, so why
bother implementing shimé?

Documents almost ready for publication as
RFC but not much progress this year

One or two experimental implementations

My current work

® Multipath TCP: split a TCP session into
subflows, send those over separate paths

® good for resource pooling, fast reaction
to outages/congestion

® [wo approaches: change both ends and
negotiate addresses per path, or only
change sender

One-ended TCPm

Only changing sender easier to deploy
Fewer sequence number space issues

Do per-path congestion control with SACK
Selecting paths could be an issue:

® get help from routers

® or use shimé to negotiate addresses

Questions!

® |f you think of more later:
iljitsch@bgpexpert.com

