Multi-MTU subnets

draft-van-beijnum-multi-mtu-00

IETF-69

lljitsch van Beijnum

The Problem

	Mbps	MTU	Pkts/sec
Ethernet	10	1500	813
Fast ethernet	100	1500	8127
Gigabit ethernet	1000	1500	81274
10 gigabit ethernet	10000	1500	812744

Why still 1500?

• 1500 has been the (IEEE) law for 30 years

- old equipment handles >1500 badly
- Higher speed ethernet segments must interconnect with older ones
- Can't fragment or negotiate neighbor properties at ethernet level

Big Packet Advantages

- More room for additional headers without path MTU discovery breakage
- Lower overhead, especially with large headers
- Less per packet work in hosts = faster
- Less per packet work in routers = possible power/heat savings
- Better TCP performance

TCP/IP	PPPoE	AppleTalk	Proxies	Ethernet)
Ethernet ID: 00:1b:63:92:9f:bb					
	Configure	Manually	(Advanced)		•
	Speed	: 1000base	εT		•
	Duplex	full-dupl	ex		•
Maximum Packet Size (MTU): 🔘 Standard (1500)					
Jumbo (9000)					
aution: Satting MTU valu	a ahaya tha	Custom	: 9000	(Range: 72	to 9000)

?

Caution: Setting MTU value above the standard ethernet setting (1500) may cause some routers to crash. Please check with your ISP before setting this value above 1500.

Jumboframes

- Lots of gigabit ethernet equipment supports larger packets: "jumboframes"
- Common value: ±9000 bytes
 - but no standard non-standard size
- "mini jumbos" of ±2000 bytes common in lower-speed switches

Disadvantages (1)

 More delay and jitter so only do 1500+ at 1000 Mbps or faster • Depend more on path MTU discovery see the problem if you break PMTUD • can always reduce MTU (not increase...) • few problems with large MTU in middle

Disadvantages (2)

- More packet loss from bit errors
 - ideal pkt size = $\sqrt{(\text{overhead bytes / BER)}}$
- More undetected bit errors (?)
 - naive: more errors/packet, but fewer packets = no difference
 - complex: hamming distance makes CRC32 much stronger than expected
 - use stronger FCS for jumboframes?

The Solution

- Remove limitation that all nodes on subnet must use the same MTU
 - use standard MTU as default
 - negotiate per-neighbor MTU (and test)
- Hardware vendors must implement reasonable hardware MTUs
- Administrators may override at any point

The Protocol

- Learn IPv6 neighbor MTU from neighbor discovery option
- Send test packet
- Now ignore TCP MSS option and subnet MTU and use neighbor MTU
- IPv4: same thing but slightly different

Be Careful

Router advertisement option:
MTUs for different link speeds
off-link MTU (for TCP MSS option)
New "switch advertisement"
let switches advertise supported MTU

Questions

• What do you think?

- stick to 1500 bytes until the end of time?
- experimental?
- standards track?
- go to IEEE in asbestos suit?
- Feedback: iljitsch@muada.com