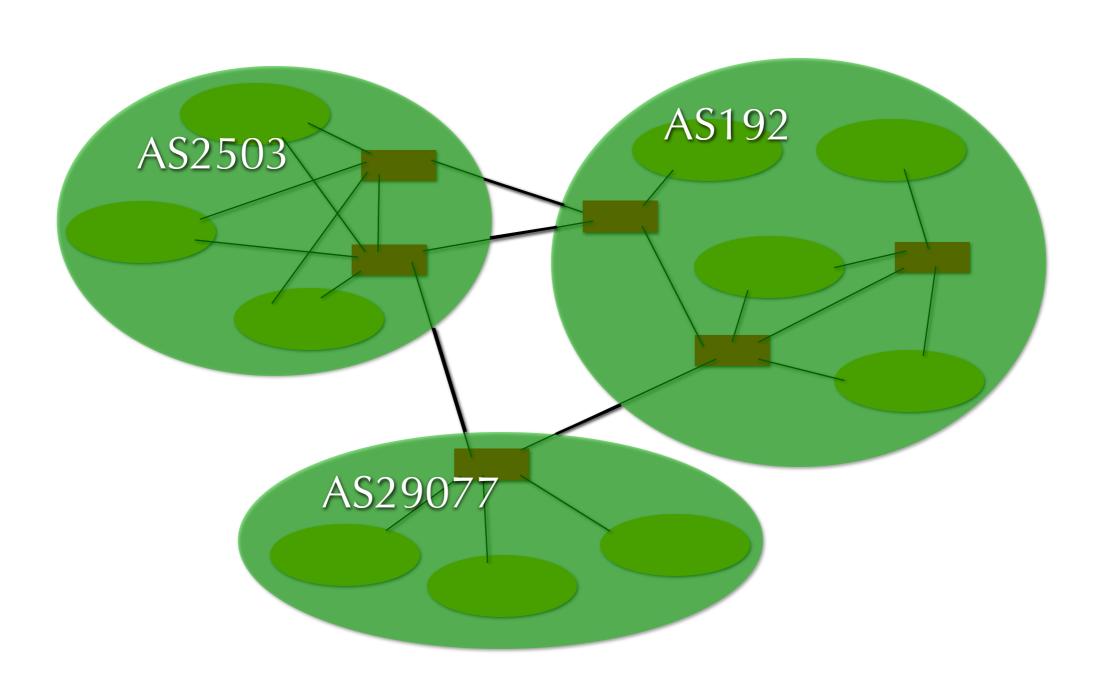
Get your hands dirty with BGP

Iljitsch van Beijnum

RIPE-70 Amsterdam, May 2015


BGP

- "Border Gateway Protocol"
- Gateway = router
- Border gateway / border router: router between our own internal network and external networks
- This makes BGP an "Exterior Gateway Protocol" (external routing protocol)
- As opposed to "Interior Gateway Protocols" such as RIP, OSPF, EIGRP and IS-IS

BGP vital stats

- BGP works over TCP port 179
- Configure BGP "neighbors" manually!
- BGP works with large address blocks and "autonomous systems" (ASes)
- Hardware: Cisco, Juniper, Brocade (Foundry),
 Riverstone, Extreme, etc.
- Software: GNU Zebra, Quagga, OpenBGPd, ZebOS, GateD, BIRD, etc.

Autonomous Systems

How BGP works

- Routers try to connect on TCP port 179
- After connection, send capabilities
 - if capabilities don't match, disconnect, error
- Send copies of best routes (ones the router itself uses) for all destinations to neighboring router
 - if allowed by policy!
- Then, only send keepalives; updates if there is a change

How BGP works (3)

AS 123, 10.0.0.1

Network Next Hop Path
> 65.0.3.0/24 84.0.4.1 18 286 4323 i
> 72.8.0.0/16 93.6.0.4 1239 i

AS 123, 10.0.0.1

AS 456, 172.16.0.1

	Network	Next Hop	Path
>	65.0.3.0/24	17.3.58.1	4323 i
>	72.8.0.0/16	93.6.0.4	1239 i

AS 456, 172.16.0.1

Network Next Hop Path

65.0.3.0/24 10.0.0.1 123 18 286 4323 i

72.8.0.0/16 10.0.0.1 123 1239 i

93.6.0.4 1239 i

AS 123, 10.0.0.1

Network Next Hop Path 65.0.3.0/24 84.0.4.1 18 286 4323 i > 172.16.0.1 456 4323 i > 72.8.0.0/16 93.6.0.4 1239 i 172.16.0.1 456 1239 i

withdraw

AS 456, 172.16.0.1

239 i

Internet exchange

AS 123

1.2.3.0/24

BIG ETHERNET SWITCH AS 789

7.8.9.0/24

AS 1011

10.11.0.0/16

AS 456

4.5.6.0/24

IX peering

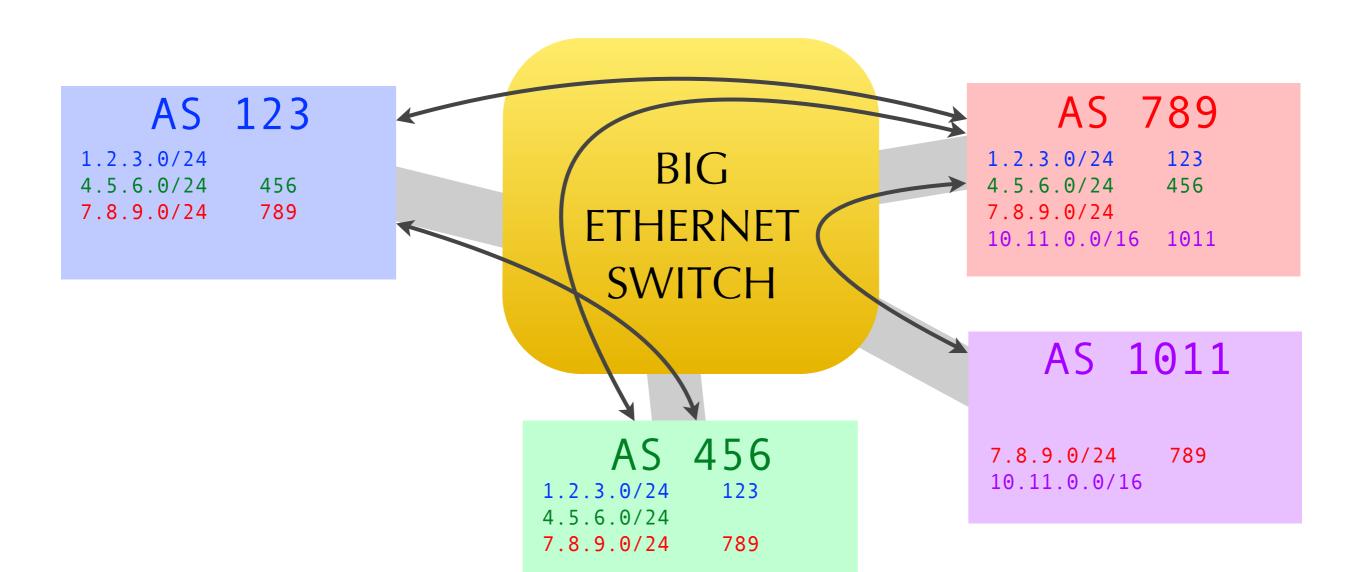
AS 123

1.2.3.0/24

BIG ETHERNET SWITCH

AS 456

4.5.6.0/24


AS 789

7.8.9.0/24

AS 1011

7.8.9.0/24 789

IX peering (2)

Path attributes

- Information attached to a prefix in BGP:
 - Next hop: where the packets go
 - AS path: all intermediate AS numbers
 - Local preference: indicates... local preference
 - Multi Exit Discriminator (MED) or "metric": indicates neighboring AS's preference
 - Community: two numbers (702:120), no fixed meaning

Configuring BGP

```
! router bgp 123 network 192.0.2.0/24 neighbor 64.51.2.33 remote-as 65065 neighbor 64.51.2.33 description Transit ISP neighbor 223.223.223.90 remote-as 456 neighbor 223.223.223.90 description IX peer !
```

Configuring BGP

```
router bgp 123
neighbor 3ffe:9500:3c:74::10 remote-as 65065
no neighbor 3ffe:9500:3c:74::10 activate
address-family ipv6
neighbor 3ffe:9500:3c:74::10 activate
network 2001:db8::/32
exit-address-family
```

BGP route selection

- 1. Prefer the path with the largest WEIGHT
- 2. Prefer the path with the largest LOCAL_PREF
- 3. Prefer the path that was locally originated via a network or aggregate BGP subcommand, or through redistribution from an IGP
- 4. Prefer the path with the shortest AS_PATH
- 5. Prefer the path with the lowest origin type
- 6. Prefer the path with the lowest multi-exit discriminator (MED)
- 7. Prefer external (eBGP) over internal (iBGP) paths
- 8. Prefer the path with the lowest IGP metric to the BGP next hop
- 9. (...)
- 10. When both paths are external, prefer the path that was received first (the oldest one)
- 11. Prefer the route coming from the BGP router with the lowest router ID
- 12. If the originator or router ID is the same for multiple paths, prefer the path with the minimum cluster ID length
- 13. Prefer the path coming from the lowest neighbor address

Most important

- 1. Prefer the path with the largest WEIGHT
- 2. Prefer the path with the largest LOCAL_PREF
- 3. Prefer the path that was locally originated via a network or aggregate BGP subcommand, or through redistribution from an IGP
- 4. Prefer the path with the shortest AS_PATH
- 5. Prefer the path with the lowest origin type
- 6. Prefer the path with the lowest multi-exit discriminator (MED)
- 7. Prefer external (eBGP) over internal (iBGP) paths
- 8. Prefer the path with the lowest IGP metric to the BGP next hop
- 9. (...)
- 10. When both paths are external, prefer the path that was received first (the oldest one)
- 11. Prefer the route coming from the BGP router with the lowest router ID
- 12. If the originator or router ID is the same for multiple paths, prefer the path with the minimum cluster ID length
- 13. Prefer the path coming from the lowest neighbor address

Most important

- Prefer the path with the largest LOCAL_PREF
- Prefer the path with the shortest AS_PATH
- Prefer the path with the lowest multi-exit discriminator (MED)
- Communities!

Influence BGP

- "Route map": if-then construction, if route satisfies match condition, then execute set action
- Possible conditions:
 - destination falls within a range of IP addresses
 - regular expression on AS path
 - community
 - or simply everything from a certain neighbor

Route map actions

- Set local preference
- Make AS path longer by prepending it
- Set or adjust MED
- Add or remove communities
- Or filter out the route altogether

Increase local pref

```
! router bgp 123 neighbor 223.223.223.90 remote-as 456 neighbor 223.223.223.90 description IX peer neighbor 223.223.223.90 route-map loc-pref in ! route-map loc-pref permit 10 set local-preference 110 !
```

Prepend path

```
ip as-path access-list 25 permit _1103_!

route-map selective-prep permit 10

match as-path 25

set as-path prepend 123 123
!

route-map selective-prep permit 20

set as-path prepend 123
!
```

Prefix lists

Filter route destination (IP address ranges)

```
router bgp 123
neighbor 223.223.223.90 remote-as 65456
neighbor 223.223.223.90 prefix-list export out
neighbor 223.223.223.90 prefix-list import in
ip prefix-list export permit 192.0.2.0/24
ip prefix-list import deny 192.0.2.0/24 le 32
ip prefix-list import deny 223.223.222.0/23 le 32
ip prefix-list import permit 0.0.0.0/0 le 24
```

Prefix lists (2)

```
router bgp 123
neighbor 2223:2223::6:5456 remote-as 65456
address-family ipv6
neighbor 2223:2223::6:5456 activate
neighbor 2223:2223::6:5456 prefix-list export out
neighbor 2223:2223::6:5456 prefix-list import in
ipv6 prefix-list export permit 2001:db8::/32
ipv6 prefix-list import deny 2001:db8::/32 le 128
ipv6 prefix-list import deny 2223:2223::/64 le 128
ipv6 prefix-list import permit ::/0 le 48
```

Filtering

- Don't provide transit by mistake
- AS path filter list: filter on AS
- Prefix list: filter on IP addresses
- Unfortunately, full scale incoming route filtering largely infeasible on internet exchange
- So everyone must have good outgoing filters!
- Incoming: at least reject own block and IX prefix
- Also, as a safety net: maximum prefixes

BGP security

- Protect BGP TCP sessions:
 - today: with RFC 2385 MD5 password option
 - in the future: IPsec?
- Protect data inside BGP:
 - today: huge filters (based on routing registry?)
 - soon/now: address space certificates (rPKI)
 - past (future?): Secure BGP or Secure Origin BGP

32-bit AS numbers

- AS numbers originally 16 bits: 64500 usable
 - in use now: 59146 (with ± 3050/year new)
- So make 32 bits
 - hide 32-bit AS path in new attribute
 - 16-bit only routers see AS 23456
- 32-bit AS numbers:
 - in use now: 10694 (with ± 3000/year new)

32-bit AS numbers (2)

AS 4 (32-bit)

AS16: 3 2 23456

AS32: 3 2 100000

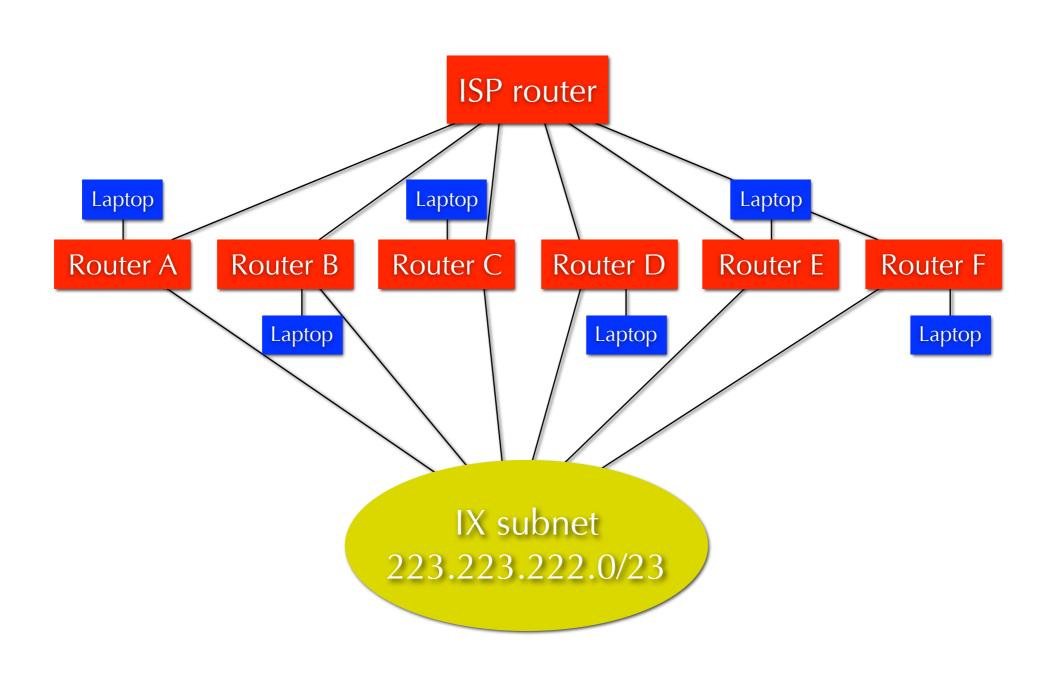
AS 3 (16-bit)

AS16: 2 23456

AS32: 3 2 100000

AS 2 (32-bit)

AS16: 2 23456


AS32: 2 100000

AS 100000 (32-bit)

AS16: 23456

AS32: 100000

Our test network

IP addresses

- You get a letter/number, like G = 71
- Configs for your VM(s): www.bgpexpert.com/course.php
 - AS number: 999<u>71</u>
 - prefix: 99.<u>71</u>.0.0/20 / 2001:960:7bf:<u>71</u>00::/56
 - admin address: 99.<u>71</u>.0.1/24
 - addresses for transit: 10.0.<u>71</u>.2/30 / 2001:960:7bf:<u>71</u>::2
 - IX: 223.223.223.<u>65</u>/23 / 2001:960:7bf:223::9:99<u>71</u>/64

Exercises

- Feel free to experiment on your own!
- Or do these exercises:
 - set up a transit BGP session to 10.0.XX.1 (no filters yet!)
 - find two other people to peer with, set up BGP sessions towards them
 - increase the local preference on your peering prefixes
 - set up filtering for your peering sessions
 - set up MD5 passwords on your BGP sessions

Common commands

- Show status neighbors: show ip bgp sum / show bgp sum
- Routes to/from neighbor: sh ip bgp nei 1.2.3.4 /
 2001:abc::1 advertised-routes / paths / routes / received-routes / received
- Show BGP table: show ip bgp / show bgp / show bgp ipv6 unicast
- Show prefix details: show ip bgp 10.0.0.0
- Reset session: clear ip bgp 12345 / 1.2.3.4
 - or * for all sessions, also with "in" or "out"

Thanks for listening!

http://www.bgpexpert.com/

iljitsch@bgpexpert.com